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Abstract 

This report presents the results of a study on the practice issues involved in using the Sym- 
bolic Model Verifier (SMV) for model checking software systems. The case study is of a 
Simplex implementation—the Simplex coordinated demonstration system for reliable system 
upgrade. The investigation consisted of generating a system model (using both statechart and 
SMV notations), specifying claims (expected properties) of the system as temporal logic for- 
mulae, and checking those formulae with respect to the SMV model. The various steps in- 
volved in the modeling process are described. Examples of the claims, their results, and a 
description of how the SMV tool analyzed them are detailed. Key engineering decisions 
made during the modeling process and a work breakdown of the effort are also presented. 
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1 Introduction 

Modeling, particularly mathematical modeling, is an integral part of other engineering disci- 
plines. There are numerous examples in the literature demonstrating the effectiveness of 

modeling in engineering endeavors [Jackson 98, Parnas 98]. For example, in order to build a 
bridge, an engineer creates drawings, formal engineering documents, mathematical models, 
and physical models and interacts with other engineers using these artifacts. The approval for 
and construction of the bridge is based in large part on the engineering models created in the 
early part of the design effort. After the bridge is in use, even for several decades, if a change 
is to be made in the design of the bridge, the engineers consult the original documentation 
and models and, before making changes, use these artifacts to justify these changes. Similar 
processes are followed in the aircraft industry, where structural and aerodynamic models of 
the airframe are created and analyzed before any change is made to the physical structure. 

There are varying views about how to incorporate formalism and models in software engi- 
neering [Clarke 96b, Jackson 96, Jackson 98, Parnas 98] but often today, for software sys- 
tems, the code is directly modified without consulting design or related engineering docu- 
mentation. Though it is prone to error, this approach can work for a short time for 
uncomplicated systems, but the cumulative adverse effects can ultimately be very costly. 
For complex systems though, this approach is problematic. Realistic software systems are 
extremely complex and the source code should not be the only engineering model of the 
system that is used to engineer an upgrade. Models, engineering artifacts that faithfully re- 
flect the system but that step back from implementation, can aid in reasoning about the 
properties of the system, provide rationale, and support subsequent system upgrades. 

By presenting the results of a case study, this report explores practice issues involved in the 
use of the Symbolic Model Verifier (SMV) for model checking of a system. The Symbolic 
Model Verifier (SMV) is a model checking tool [Clarke 95, McMillan 92] that accepts a fi- 
nite state representation of a system and a set of properties or claims made about that system 
in Computational Tree Logic (CTL). The SMV tool checks whether these properties hold for 
the model. In most cases, it also provides counterexamples for the properties that do not hold. 
The case study is of the Simplex coordinated demonstration system, an implementation of the 
Simplex architecture [Sha 96, Simplex 98, STR 98]. 

As an emerging discipline, software engineering is evolving into one that increasingly relies 
on models as a basis for engineering practice. This work is intended to contribute to the evo- 
lution of software engineering as a discipline and provide additional data on the use of mod- 
eling within software engineering practice. 
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Section 1 provides a background for the case study by presenting model-based verification, 
model-checking techniques, Simplex, and the Simplex coordinated demonstration system. 
Section 2 describes the generation of statechart models for the case study. An overview of 
SMV, its use in creating system models, and the issues involved in the model checking with 
SMV are presented in section 3. Section 4 describes process issues, including a summary of 

the various activities conducted in the case study. A summary of the observations, results, and 
future work are presented in Section 5. The appendices provide a glossary of terms and acro- 
nyms, the details of the model developed in this study, and an excerpt from the specification 

used in the study. 
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2 Background 

This work was undertaken as of an independent study by the first author. The principal objectives 
of the study were to capture process and engineering data and to investigate feasibility issues in 
the application of model-based approaches for verifying (finding errors) in software systems. The 
technical focus of the modeling effort was to explore the fault tolerance responses of the Simplex 
coordinated demonstration system. 

2.1 Model-Based Verification 
Model-based verification [Gluch 98] is a verification practice for upgrades that relies upon the 
creation and analysis of essential models of a system. Essential models are abstracted representa- 
tions of requirements, design, or code that capture the critical aspects of a system. Model-based 
verification techniques encompass a variety of modeling approaches including many that have 
been identified as lightweight formal methods [Jackson 96]. 

Modeling a system is a process of forming a representation of the system that shares important 
properties with that system [Jackson 95]. The model is generally an abstraction of the system and 
is often used to help reason about some interesting or important properties of the system. It also 
serves as a common framework for understanding and communication among system developers 
and users. 

One embodiment of the model-based verification approach is termed "model checking" and has 
been successfully applied in hardware and protocol analyses. In model checking, an abstract for- 
mal model is created and checked, using an automated tool, against desired (required) properties. 
The success stories for model checking in the hardware and protocol analysis fields can be found 
in the literature [Clarke 95, Clarke 96a, Clarke 96b, Fujita 96, Raimi 97]. 

Model checking techniques rely principally on state machine models. State machine models of 
practical (realistic size) software systems are complicated by the problem of state-explosion 
[McMillan 92]. This size explosion results from the fact that the total number of combinations of 
possible states that a system can occupy during its use is extremely large—hundreds of thousands 
of states or more. Hence, trying to represent all valid states individually and to identify the transi- 
tions among them is impractical. Modeling and analysis techniques have been and are being de- 
veloped to alleviate this problem [Clarke 86, Clarke 96a, McMillan 92]. The Symbolic Model 
Verifier (SMV) tool used in this study employs symbolic rather than explicit state representation 
to address the state explosion problem. 
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2.2 The Simplex Coordinated Demonstration System 
The case study for this investigation is the Simplex architecture coordinated demonstration system. 
The physical configuration of the coordinated demonstration system is shown in Figure 1. It con- 
sists of two carts, each of which supports an inverted pendulum. There is a rod extending between 
the top of each pendulum. Each cart moves back and forth along its own track. The control goal of 
the system is to balance each pendulum and the rod between them as the carts move along. 

The control functions for the system are partitioned into inner loop controllers and outer loop co- 
ordinator modules. The inner loop controllers control the positions of the carts, directly maintain 
the balancing, and provide the motion control for the carts as they move to target locations. The 
outer loop coordinators provide higher level control to the inner loop controllers by sending target 
locations to them. 

Pendulum 

Pendulum 

Figure 1:    The Coordinated Demonstration System 

The objective of the demonstration system is to show that the Simplex system will keep the pen- 
dulums and rod balanced while maintaining coordinated motion of the carts, even in the presence 
of failures. Especially important is the ability to maintain functionality in the event of communi- 
cation failures. 

The Simplex architecture [Sha 96, Simplex 98, STR 98] is a framework for system integration 
and evolution that supports the online upgrade of software intensive systems and provides fault 
tolerance in the event of an error in an upgrade. From the perspective of application developers, 
Simplex is a collection of design principles and real time process management, reliable commu- 
nication, and fault tolerant facilities. 

Simplex provides fault tolerance through redundant variants of components. Atypical imple- 
mentation of the Simplex architecture, for example the outer loop coordination in the coordinated 
demonstration system used in this case study, consists of a module management unit (decision 
unit in the case study), one or more application variants (experimental and baseline coordinators 
in the case study) and a safety variant (safety coordinator in the case study). These outer loop 
modules are shown in Figure 2. 
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The decision unit supports the dynamic upgrade operation and responds to faults in the applica- 
tion variants (the experimental and baseline coordinators), switching control as needed. The 
safety coordinator is treated as a trusted application and the system switches to the safety coordi- 
nator when faults occur. Structurally the three coordinators (safety, baseline and experimental) 
may all be child processes of the decision unit. 

Outer Loop 1 

Decision Unit 1 
Safety 

Coordinator 
Baseline 

Coordinator 
Experimental 
Coordinator 

Figure 2:   Concurrent Models of the Outer Loop 

The experimental coordinator is the upgraded application software and the baseline coordinator is 
(proven) application software that is being upgraded. The system reverts to the safety coordinator 
when faults occur. As described earlier, the safety coordinator is the trusted 'core' of the system 
and encompasses the functionality required to take corrective actions. 

An excerpt from the coordinated demonstration system specification is presented in Appendix C. 
The complete specification [Seto 97] was used to model the coordinated demonstration system. 
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3 Modeling with Statecharts 

Statecharts [Harel 87] provide a means of graphically representing system states and transition 
relations among those states. They are useful in the design and specification of complex discrete 
event systems, such as digital control systems, computer-based real time systems, and communica- 
tion protocols. Statecharts extend the conventional state-machine (state transition) diagrams, with 
three important elements, the notion of hierarchy, concurrency, and communication. By using the 
statechart notation, a system being modeled can be represented modularly and refined in stages. 

It is not always necessary to represent a system first as a statechart model and then convert it into 
an SMV model. SMV models can be created directly from the system specifications or transition 
tables. In the case study, the statechart model of the system was built first to provide a systematic 
basis for learning the system. It was also important to notice that the statechart approach was very 
useful in the interaction with the designer, as a graphical depiction of the system was superior to 
textual depiction during discussions. 

3.1 Statechart Notation 
A detailed set of statechart notations can be found in [Harel 87]. Figure 3.1 summaries the nota- 
tion used for the case study which closely follows the Harel convention. States are represented by 
ovals, and transitions are represented by lines drawn between the states. The enabling of the tran- 
sitions are governed by transition guards as shown in Figure 3. 

Incoming transition(s) Outcoming transition(s) 

Module Label / variable name 

Module/variable state 

Orthogonal states 

Orthogonal 
state 1 

Orthogonal 
state 2 

Orthogonal 
state 3 

Orthogonal 
state 4 

Transition with 
Transition Guard 
(enabling) condition 

Figure 3:   State Notation Used in the Case Study 
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3.2 Creating the Statechart Model 
The modeling process using Statecharts involved the following steps. 

1. The first step was confirming the applicability of the statechart approach to the given 
problem. The system should be easily described as a set of states that capture the important 
aspects ofthat system. This implies that it is important to keep in mind what behaviors of the 
system are most important in meeting the critical system requirements, what performance or 
properties are being investigated or sought in the modeling effort, and what aspects of the 
system are important to understand. 

In this study, the fault transition model of the system was the focus of interest. Hence the 
outer loop controller and its response to error conditions were chosen to be modeled. The 
inner loop controller was not modeled. 

2. The next step is to decompose the system into logical partitions or modules. The outer loop 
controller can be partitioned into the decision module, safety coordinator, baseline 
coordinator and experimental coordinator, as shown in Figure 2. These modules form 
concurrent modules. That is, each of these modules has one active state and the outer loop 
controller can be described as an ordered n-tuple of these states. 

It is important to recognize that this step is iterative and the further processes of modeling 
will identify the other concurrent modules (such as the Communication and Pendulum states 
in the case study). 

3. Having identified the concurrent modules, the next step is to refine these modules further 
into more detailed substates. The process of refinement can be carried out through several 
levels. The number of levels is generally dictated by the set of properties the user wants to 
investigate or understand. 

In the case study, two levels of refinement were found to be adequate to discuss the fault- 
behavioral properties of the system. For example, the overall system was represented as 
having three states, Initial, Independent, and Coordinated. The Coordinated state was 
further refined as having modules Decision unit, and the three coordinators. Each of the 
coordinators were further refined into their respective composite states, such as Alive, 
Disabled, Terminated, Timing Performance and Position Performance. The refined 
statechart for the Experimental coordinator is shown in Figure 4. 
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ExperimentaLCoordinator 

Ex_CoordinatorState Ex_TimingPerformance 

TP_meet 

16 

TPmiss 

ExJPositionPerformance 

<& 

18 19 
^        ~^y 

(    PP_miss    ) 

Figure 4:   Refined Experimental Coordinator Statechart 

4. The next step is to identify the initial system state. The initial states for the system were, 
Initial (in Overall system module), Experimental Active (in Decision module), Transport (in 
Safety coordinator module) and Alive (in the other coordinator modules). Fault 
representation states were initialized to the no-fault state. The system error states, the 
Communication, Pendulum and Alignment are concurrent states that were required to 
specify the system completely. These states were concurrent with respect to both Carts and 
hence they were added as Common States in the Coordinated_demo module. 

5. Having identified all the states and the initial states, the transitions among the states and the 
conditions that govern these transitions are to be identified. There are several ways of doing 
this. If the state diagrams are not cluttered and the transition relations are not very long and 
complicated, then they can be captured in the graphical representation itself, with some 
associated text describing the predicates that govern the transitions. The predicates are 
guards on the transition. 

6. At this point, it is also important to review the given specification to see if any states or 
transitions are omitted, to identify any transitions that have been added in the module by the 
modeler's choice and not specified in the document, and to ensure that all diagrams are 
consistent in naming and description style. Meeting with the designer at this stage was found 
to be advantageous. In the case study, this step helped to iterate and refine the model and 
clarify ambiguities in the specification. It also helped in clarifying ambiguous phrases such 
as "iteml, item2, etc." 

The result of this process is a graphical statechart representation of the system. In the case study, just 
going through the modeling process itself uncovered ambiguities in the specifications and acted as a 
vehicle to unambiguously convey the modeler's understanding of the system to the designer and obtain 
clarifications. The complete statechart representation of the case study can be found in Appendix B. 
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4 Modeling Checking with the Symbolic 
Model Verifier (SMV) 

The Symbolic Model Verifier [McMillan 92, SMV 98] provides a means of algorithmically repre- 
senting a system as a set of states and guarded transitions. It allows for the specification of the 
properties of the system in Computational Temporal Logic (CTL) notation and assists in checking 
these properties against the state machine representation. Hence, SMV is a tool for checking that 
finite state systems satisfy computational tree logic specifications. It uses the Ordered Binary De- 
cision Diagram (OBDD) based symbolic model checking algorithm [Bryant 86]. 

4.1 Model Checking Steps 
Generally model checking involves the automated checking of a model against the expected (de- 
sired) properties of a system. In SMV, models are checked against claims and the output of the 
SMV tool is a confirmation of the claim or a non-confirmation with counter example information. 
This process is shown in Figure 5. 

Figure 5:   The SMV Model Checking Process 
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The process of model checking generally consists of the following main tasks: 

• Modeling: Converting the system specification or design into a formalism accepted by the 
model checker. For the SMV model checker, models are expressed in the SMV language. 

• Generating claims about system properties: Before starting to check the model, it is 
necessary to state what properties the system must satisfy. These properties, claims, are 
established based upon the specification, and are expressed in SMV using computational tree 
logic (CTL). 

• Model Checking the model with respect to the claims: This is an automated process in SMV. 
The SMV tool, builds a representation of the system state space and checks the claims made, 
with respect to the model. In doing so, there are several possible outcomes. 
- The claim could be true. In this case, SMV announces that the claim holds. 
- The claim could be false. In this case, SMV announces that the claim does not hold and in 

most cases provides a counter example (trace) against the specified claim. 

It is important to note that model checking only checks the model of the system. For example, 
when SMV declares a claim as 'true' or 'false', it means that the claim holds or fails to hold with 
respect to the system model. It does not verify that the model accurately represents the system. 

While model checking, the SMV tool may run out of memory or may abort its execution due to 
system time limitation. In these cases, it is possible to modify control parameters to reduce the 
execution resources required to check the model. It may also be necessary to simplify the model 
(e.g., by using a different level of modeling abstraction). These limitations are dependent on both 
the inherent complexities of the model and the computing resources available. 

4.2 SMV Modeling Notation: 
The language of SMV is used to describe complex finite state systems. The details of the SMV 
notation can be found in McMillan [92], but the important features of the language are summa- 
rized in the following list. 

Modules: The system can be decomposed into modules. Individual modules can be instantiated 
multiple times and modules can reference variables that are declared in other modules. 

Module execution: The assignment statements in SMV are executed simultaneously and in parallel. 
This is used in cases where system modules execute in a common execution step (e.g., coordinated 
through a common hardware system clock). If the system modules can interleave in their execution 
steps, then the keyword process can be used to model asynchronous interleaving among modules. 

Non determinism: The state transitions in the system model can be deterministic or non-deterministic. 
Non determinism can be used, for example, to describe some aspects that are hidden design decisions or 
allow for deferred decisions. 

VAR: This is the variable declaration. 
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MODULE main: This identifies the main module where the program starts executing. 

MODULE: A module is a self-contained set of states and transitions. 

ASSIGN: This designates the assignment area, where both the initial and next values are assigned. 

INIT: This designates the initial value. 

NEXT: This designates the next value, generally predicated on some other states or conditions. 

CASE: This is the equivalent of Switch (branching) conditions in the programming language C. 

4.3 Creating the SMV Model 
This section presents the steps used in creating the SMV model for the case study. Included in 
the description of each step are comments about the specific process issues and engineering 
tradeoffs involved. 

4.3.1 Learning SMV 
Since the modeler was unfamiliar with the SMV approach, the initial step in creating the SMV model 
for this study involved learning the SMV modeling technique and notation. This was accomplished by 
first looking at a small example, specifically the ready-busy example shown in Figure 6, and review- 
ing the SMV literature. The ready-busy example is a two-state system. 

request = true 

task done = true 

Figure 6:   Ready-Busy Example 

Figure 7 shows the SMV code for the ready-busy example. The 'main' MODULE consists of 
the variables 'request', task_done, and 'state'. The variables 'request' and 'task_done' are 
Boolean and can take only one of two values: true or false. The variable 'state' is of type enu- 
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meration that can assume any one of the two values ready or busy. The initial value of state is 
ready. If the system is in ready state and request is true, the system goes to state = busy. If the 
system is in busy state and task_done is true, the system goes to state = ready. Otherwise, the 
system state is not changed. 

MODULE main 
VAR 
request: boolean; 
task_done: boolean; 
state: {ready, busy}; 
ASSIGN 
init(state) := ready; 
next(state) := case 
state = ready & request: busy; 
state = busy & task_done : ready; 
1 : state; 
esac; 

Figure 7:   SMV Model of the Ready-Busy Example 

4.3.2 Variables 
The next step is to declare the variables corresponding to the states in the statechart. Two points 
must be borne in mind in this process. The variable names should be meaningful and consistent. 
The second point is that variable types (Boolean or enumerated or array) and the scope of vari- 
ables (the modules where the variable is available for change) need to be determined carefully. If 
a logical state is to be represented, a Boolean variable is the preferred type. If the variable takes 
only a few values, then enumerated types are suitable. The other types are to be used sparingly, as 
they very quickly contribute to the state explosion problem. Any unused or redundant variables 
should be deleted in this step. 

4.3.3 Model Refinement 
SMV follows the same refinement principles as those used in Statecharts. For example, Cartl, 
which is a module, is declared as a variable. This Cartl module is then made up of other variables 
and modules. Thus, the composition is hierarchical where each statechart module is converted 

into an SMV Module. Each state within a module becomes an enumerated (or Boolean) value for 
the variable. 
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In the case study the experimental coordinator module which includes the Coordinator state, timing 
performance, and position performance is converted into an SMV module. The Statechart represen- 
tation for experimental coordinator module is shown in Figure 4. The SMV representation is shown 
in Figure 8 where each concurrent state machine in Figure 4 is modeled as a variable. In the SMV 
model the transitions among the states are represented as boolean predicates that control (enable or 
disable) the transitions. The initial state of a module is represented as init(state) and the subsequent 
state, the one that occurs at the next execution, is represented as next(state). These state transitions 
are governed by predicates typically encapsulated in a case statement. As shown in Figure 8 on the 
third line from the bottom, the next state for the experimental coordinator, when both the predicates 
(state = terminated) and (User.Ex_cked = create) are true, is the alive state. 

- the Experimental unit 
MODULE Experiment(User,S_obs) 
VAR 

state: (alive,terminated,disabled); 
time : {meet,miss}; 
perf : {meeyniss}; 

ASSIGN 
init(state) := alive; 
next(state) := 
case 

((state = alive) & ((time =miss) I (perf = miss) I (S_obs.status=unsafe))) I ((state 
((state = alive) & (User.Ex_cked = kill))     : terminated; 
(state = disabled) & (User.Ex_cked = kill)    : terminated; 
(state = disabled) & (User.Ex_cked = enable)  : alive; 
(state = terminated) & (User.Ex_cked = create): alive; 
1: state; 

esac; 

Comments: User is the reference to the user commands 
module that gives the user initiated commands such as 
kill and create. S_obs is the reference to the fault status 
of the cart It has a variable status which takes the values 
safe or unsafe. 

= alive) & (User.Ex_cked = disable)): disabled; 

Figure 8:    The SMV Representation of the Experimental Coordinator 

4.3.4 Iterations of the Model 
As with the statechart model, the SMV modeling process required a few iterations. The modeling 
discussions with the designer, helped to clarify some implicit assumptions in the specifications 
and correct minor misconceptions in the initial versions. For example, the module Safety coordi- 
nator was initially modeled as having Transport state and error indicator modules. The initial im- 
pression in reading the specification was that the Communication, Pendulum, and Align states 
were equal priority error indicator states. But the modeling discussions showed that these states 
are not error indicator states, but rather error handing states, where actions were initiated to re- 
spond to the error. Hence, the Safety coordinator was modified to have states Transport, and error 
handling states Handle_Comm, Handle_Pen and Handle_align, as shown in Figure 9. With this 
modification, the implicit priority and hierarchy in handling the three errors was also clearly 
brought out, with communication errors given the highest priority and alignment errors given the 

least priority. 
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Safety_CR 

Figure 9:   Safety Coordinator States 

4.3.5 Syntax Checking 
Syntax checking is the next step in the modeling process. The syntax and consistency of the 
model can be checked using the SMV tool, without making a temporal logic claim. However, this 
checking does not guarantee that the model is correct, but rather identifies basic syntax errors and 
ensures that the model can be processed by the error checker. 

4.4 Checking the Claims 
In SMV, claims are written as CTL formulae. Claims are included in the SMV input at the end of the 
Module main, under the keyword SPEC. The CTL operators used in SMV are combinations of A (for 
all), F (eventually), G (globally), E (there exists), and X (in the next state). These operators can be 
combined with Boolean operators of first order logic (such as NOT, AND, OR, and IMPLIES). 

As stated before, the checking of claims in SMV is an automated process. SMV builds the OBDD 
representation of the modeled system and attempts to check the claims. If it encounters an error 
during the checking, it provides a counterexample so that the user can use this trace to identify 
any inconsistencies. In some cases, especially with EF (there exists a path) specifications, SMV 
cannot give specific counterexamples. This is because, to give a counterexample that a path does 
not exist, it must enumerate all possible paths and show that the required path does not exist. 
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A few example claims used in the case study and their results are discussed here. In each subsec- 
tion that follows the claim is listed along with its meaning, the results of the SMV tool checking 
of the claim, and an interpretation of the results. 

4.4.1 Claim 1 
The claim for the first example is shown below: 

AG (( G_COMM = 0) -> (AF( cartl.sf.state = han_com))) 

Meaning 
This claim states that, if there is a communication failure the system will in all cases (always) 
handle the fault. The explicit translation of the notation for the claim is that for all computation 
paths globally, if the communication fails, then the system will eventually get to a state of han- 
dling the communication fault. 

SMV Result 
specification AG   ((  G_COMM =  0)   ->   (AF(  cartl. sf. state = han_com) )) is true 

Interpretation of the Result 
SMV confirms that the claim holds. Consequently, in any system state, if the communication fails 
the system will handle the communication error. 

4.4.2 Claim 2 
The claim for this example is shown below. 

AF (( G_COMM = 0 &  G_PEN =0) -> (AF( cartl.sf.state = han_pen))) 

Meaning 
This claim states that if the communication has failed and there is a pendulum fault at the same 
time, the system will always handle the pendulum fault. The explicit transition of the notation for 
the claim is that for all computation paths, if the communication has failed and the pendulum is in 
the fault state, then eventually the system will always get to the pendulum fault handling state. 

SMV Result 
This claim produced a lengthy trace, as shown in Table 1. The trace is read down each column 
proceeding from the leftmost column to the right. 
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%smv-cl6381-kl6381-f-r 
CoorSystem.SMV 

-- specification AF (G_COMM 
= 0 & G_PEN = 0 -> AF 
cartl.s... is false 

~ as demonstrated by the fol- 
lowing execution sequence 

state 1.1: 

sys = initial 

target = 1 

coor_on = 0 

G_COMM = 0 

G_PEN = 0 

Cl_.sf.COMM = 0 

Cl_sf.PEN = 0 

Cl_sf.ALIGN = 0 

Cl_sf.status = safe 

C2_sf.COMM = 0 

C2_sf.PEN = 0 

C2_sf.ALIGN = 0 

C2_sf.status = safe 

Table 1:   SMV Trace for Claim 

cartl.User.Bl_cked = disable 

cartl.User.Ex_cked = disable 

cartl.sf.state = transport 

cartl.Ex.state = alive 

cartl.Ex.time = miss 

cartl.Ex.perf =miss 

cartl.Bl.state = alive 

cartl.Bl.time = miss 

cartl.Bl.perf =miss 

cartl.DU.D_select = exp 

cart2.User.Bl_cked = disable 

cart2.User.Ex_cked = disable 

cart2.sf.state = transport 

cart2.Ex.state = alive 

cart2.Ex.time = miss 

cart2.Ex.perf=miss 

cart2.Bl.state = alive 

cart2.Bl.time = miss 

cart2.Bl.perf = miss 

cart2.DU.D_select = exp 

2 

state 1.2: 

sys = independent 

Cl_sf.status = unsafe 

C2_sf.status = unsafe 

cartl.sf.state = han_com 

cartl.Ex.state = disabled 

cartl.Bl.state = disabled 

cart2.sf.state = han_.com 

cart2.Ex. state = disabled 

cart2.Bl.state = disabled 

- loop starts here -- 

state 1.3: 

cartl.DU.D_select = safety 

cart2.DU.D_select = safety 

state 1.4: 

resources used: 

user time: 0.86 s, 

system time: 0.06 s 

BDD nodes allocated: 10542 

Interpretation of the Results 

The claim was declared false and a counterexample was provided; i.e., there is a case where the 
pendulum fault would not be handled. This situation occurs, as noted in state 1.1 and state 1.2 in 
Table 1, in the case that there is a communication failure (G_C0MM = 0) and the system never 
recovers from that failure. In this situation, no other errors can be handled because handling a 
communication fault is the highest priority. Hence, the system is stuck in the communication fault 
handling state, as expected based upon the priority fault-handling scheme. 

4.4.3 Claim 3: 
The claim for this example is shown below 

AF (( G_COMM = 0 &  G_PEN = 0) -> (EF( cartl.sf.state = han_pen))) 

Meaning 

This claim is a modification of claim 2, which explores whether the pendulum fault is handled, 
not always but rather will be handled under some circumstances. The explicit translation of the 
notation for the claim is that for all computation paths, if the communication has failed and the 
pendulum is in fault, then eventually there exists a path by which the system can get to the state 
of handling the pendulum fault. In particular for this claim the second AF of claim 2 is replaced 
by EF. The EF states that 'there exists a path' in contrast to AF which states 'for all paths.' 
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SMV Result 
specification AF   (G_COMM =  0 & G_PEN =  0  -> EF cartl.s... is true 

resources used: 
user time: 0.72 s 
system time: 0.11 s 
BDD nodes allocated: 10032 

Interpretation of the Results 
For this claim when the communication fails, the system handles the fault and demonstrates that 
the system can handle the pendulum fault if the communication is restored. The success of the 
claim indicates that there is a path that will eventually take the system to the handling the pendu- 
lum fault state. 
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5 Process Metrics and Observations 

Time logging was done during the course of this case study. This consisted of the time taken to 
learn the specification, learn the SMV tool, model the system, incorporate changes, and generate 
and check claims. These results are summarized as percentages in Table 2 and each of the activi- 
ties is described in more detail in subsequent subsections. The information includes key charac- 
teristics of the effort, description of the work completed, and general comments on the activity. 

The percent of effort in each category is presented here. Through the capture of data from future 
case studies we hope to get statistically significant metrics that can be used to make predictions 
about the level of effort required to implement model-based verification practices in specific 
problem types and provide a comparative norm across projects. 

Activity Effort 
Percent 

Comments 

Learning the System 33% 37% specific meetings and 63% in reviewing specifications and related 
material 

Learning SMV 15% This involved review of manuals, completing example problems, and 
consultation with experts. 

Modeling the System 38% 15% in meetings, 57% Statechart modeling and 28% hours in SMV 
modeling 

Changes 4% 50% in meetings and 50% in model changes and checking 

Model Checking 10% This does not include time for someone to learn CTL. 

Total = 100% This represents all of the time spent on the effort. 

Table 2:   Percent Time in Each Major Activity 

5.1 Learning the System 
The objective of this activity was to understand and clarify the details of the system as repre- 
sented in the specification. 

Description 

The specifications were carefully read and reviewed. A series of meetings were held with the de- 
signer to clarify several points in the specifications. These consisted of a series of five 60-to-90- 
minute meetings spread over 2.5 months. Additional background material, related to the system 
specification was also reviewed (e.g., notes about the Simplex architecture). 

CMU/SEI-98-TR-013 19 



Observations and Comments 
The specification document was very concise consisting of text supported formal notation, prin- 
cipally set notation. Interpretations of the symbols were consistent across the document. 

The individual doing the modeling had no prior knowledge of the system. 

The meetings with the designer were critical in uncovering some subtleties in the notation used in 
the specification. 

5.2 Learning the SMV Modeling Language and Tool 
The objective of this activity was to learn the SMV modeling language and how to use the 
SMV tool. 

Description 
All of the documents on SMV listed in the references section were reviewed and small sample 
problems in SMV were completed. A few discussions with the SMV research group within the 
School of Computer Science at Carnegie Mellon were also held. 

Observations and Comments 
The modeler had no previous experience with the tool other than a limited number of prior inter- 
actions with the SMV research group. These interactions with the SMV research staff were im- 
promptu and involved short conversations during encounters in the hallway or at departmental 
seminars, colloquia, or social events. 

The SMV modeling language is similar to the C programming language. It is straightforward and 
was easy to learn. It is expected that learning the tool will be straightforward for any individual 
with C programming experience and some knowledge of state machines. 

5.3 Modeling the System 
The objective of this activity was to generate a model of the system using Statecharts and later SMV. 

Description 
With the understanding that the modeler achieved after reading the system specifications, the 
system was incrementally modeled in statechart notation and meetings with the designer were 
held. These meetings further refined the models. When it was felt that the model reached a fair 
level of stability (not many corrections in a meeting), the statechart model of the system was con- 
verted into SMV. 
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Observations and Comments 
The modeler had completed a formal modeling course as part of the Master of Software Engi- 
neering program at Carnegie Mellon [Garlan 98, MSE 98]. 

Modeling of the system was a very iterative process. Generating the statemachine model took 
time but the conversion to an SMV model was straight forward, almost seamless. 

Because the study was not a full time effort over the time period for the case study, separate peri- 
ods of work sometimes involved going back and re-reading and reviewing work already com- 
pleted and relevant artifacts before continuing the modeling process. The modeling required mul- 
tiple modeling sessions including 6 versions of Statecharts and 3 versions of SMV code. 

5.4 Making Changes to the Models 
The objective of this activity was to update the models (statecharts and SMV), based upon review 
and comment by the Simplex designed. 

Description 
Two changes were to be incorporated. The first change was to modify the representation of the 
safety coordinator. The initial impression of the safety coordinator was that it acts as an error an- 
nouncer. But during the discussions it turned out that the safety coordinator actually handles the 
errors such as communication, pendulum and alignment. The second change was that the com- 
munication and pendulum faults were common to both the carts but an alignment fault was not. 
This had to be reflected in the model. 

Observations and Comments 
The models were intentionally kept modular, facilitating changes. The first change of incorporat- 
ing error-handling states instead of the error announcing states was straightforward. Because of 
the modular nature of the modeling (both in the statechart and the SMV notations), the change 
was localized. With the incorporation of the error handling states, the required priority in the error 
handling with communication error handling given the top most priority and the alignment error 
handling given the least priority was also incorporated. 

The second change of separating the hitherto common error representation states (communica- 
tion, pendulum and alignment) into the categories of 'common to both carts' or 'specific to each 
cart' was not so straightforward. This change would allow a situation where one cart could be in 
'unsafe' condition because of an alignment fault whereas the other cart could be in 'safe' condi- 
tion. For example, alignment was no longer common to both carts, but was now an autonomous 
property of each cart. This led to some major changes in two modules: Common states and Safety 
coordinator, shown in Figure B1. (The side effect of this was to also change some of the claims 
that were written. This was needed, as new variables were introduced during this modification.) 
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5.5 Generating and Checking Claims 
The objective of this activity was to identify a set of interesting properties about the system, ex- 
press them in CTL notation, and check the model against those claims. 

Description 
During meetings with the designer, a few important properties about the system of particular in- 
terest to the designer were identified. These were converted into CTL claims and the SMV tool 
was used to check these claims. When the variables used in the model changed, some of the 
claims were changed and model checking was repeated. 

Observations and Comments 
The modeler had a formal modeling course as part of the Master of Software Engineering Pro- 
gram and consequently was very familiar with temporal logic. In addition to general knowledge 
of temporal logic, expertise in Computational Tree Logic (CTL) is required. CTL is a very ex- 
pressive notation and extreme care is required in formulating the claims. 
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6 Summary 

Using the Symbolic Model verifier (SMV) as the principal modeling approach, the goal of this 
study was to explore practice and process issues involved in the modeling and model checking of 
the Simplex coordinated demonstration system. As a precursor to the SMV model, a statechart 
model was created. Both the technical design specification and discussions with the principal de- 
signer were used as the foundation for generating the statechart and SMV models as well as for 
establishing claims about the system. Throughout the modeling effort relevant engineering deci- 
sions, issues, and problem were recorded and the time required for each of the major activities 
was logged. This section presents some general observations and a summary of this work. 

6.1 Observations on the Modeling Effort 
Modeling the system using the statechart notation was found to be very useful for three reasons. 
First, the graphical notation was simple to use, helpful in learning the system, and effective in 
facilitating communications during meetings with the designer. Second, the conversion of the 
statechart model to the SMV model was very straightforward, with the structure providing an 
easy guide to creating assignment, transitions, and states within the SMV model. Third, the 
modular and hierarchical graphical structure helped to facilitate changes to the model. 

Learning the SMV tool was straight forward, as the notations were similar to common program- 
ming languages like C and the modeler was an experienced C programmer. While converting the 
statechart representation into SMV was straight forward, stating CTL claims about the system and 
verifying that a claim represents what is actually meant, required expertise and experience. Stat- 
ing the claims was one of the more difficult technical challenges of this study. Once the claims 
were stated, checking of the claim was automatically done by the tool. The counterexamples pro- 
vided for inconsistent claims were very helpful in further analysis and debugging of the system 
(model). The time for the SMV tool to complete the model checking was on the order of seconds. 

The specification of the coordinated demonstration system was, in large part, represented in a 
formal notation and no significant errors (e.g. deadlocks or starvation) were found. However, the 
case study identified some minor ambiguities in the specification, the most noteworthy being in 
the representation of fault states. It was not clear that the states communication fault and pendu- 
lum fault were common to both carts, especially since in contrast to this commonality, the align- 
ment fault was specific to each of the individual carts. 

The meetings with the designer were very useful in providing clarification and benefit to the de- 
signer, prompting him or her to look at different perspectives. In the general, application of this 
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approach involving meetings with designer, clients, and other stake holders should help to ensure 
that the model represents the system faithfully. 

Modeling is not a new process to engineers. Software engineers have their own mental models 
before developing software. What this case study reiterates is that there is lot to be gained if the 
models are formal. During this effort it was realized that the formal modeling process itself, inde- 
pendent of formal model checking, is capable of uncovering inconsistencies and ambiguities in a 
software specification. It was evident that the rigor and discipline of the notation channeled the 
modeler to ask detailed questions and seek clarifications. It is expected that these characteristics 
will be present in the general application of these techniques. 

Models can enable software engineers to reason about the properties of a system and help to es- 
tablish more formal syntax and semantic definitions that can be used to represent the system un- 
ambiguously. Additional insight into the system, especially looking at complexity that cannot be 
unraveled through manual review, can be gained through the automated checking of the formal 
model. As others have noted, the checking of the model with respect to the claims, is an addi- 
tional benefit and can be used as required on a case by case basis [Clarke 96, Jackson 96]. 

6.2 Observations on the Practice 
It is noteworthy that the rate of pages reviewed per hour for this case study was less than that 
noted by Gilb [93], a rate of 0.16 pages per hour in this study versus 0.5 to 1.5 or more pages for 
a conventional review. Others cite substantially higher rates (e.g., Jones presents a range of 12 to 
50 pages per hour depending on the type of specification and whether the time is in preparation or 
meetings [Jones 91]). This result is not especially discouraging, considering that the specification 
involved extensive formal notation and an inexperience modeler, this was the first real problem 
the modeler analyzed. In addition, these techniques have been shown to identify errors that have 
eluded detection by conventional techniques [Clarke 95, Clarke 96b, Fujita 96, Raimi 97]. 

In this effort two models were created; a statechart and a SMV model. In applying the SMV tech- 
nique, a more experienced SMV modeler would likely not create a statechart model of the sys- 
tem. In addition, there was extra time spent in pedagogical activities that increased the total time 
required to complete the modeling effort and reduced the pages per hour rate. For example, 
meetings held during the modeling effort and related activities would often involve achieving an 
understanding how to use a particular technique or capability of the modeling system rather than 
focusing on clarifying specifics of the model itself. These activities would not be a routine part of 
a practical application of these techniques, where more experienced modelers would be involved. 
While the explicit time required to learn the tool was factored out of the data used to calculate the 
page per hour rate, there still remained the exact time related to pedagogical activities, which 
proved too difficult to extract from the raw data. 

Since there is a fixed overhead to starting any modeling activity (e.g., setting up the modeling 
environment), this overhead may bias the results to lower page per hour rates in the case of small 
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specifications. Consequently, it is the opinion of the authors that the low rate observed in this 
study is not indicative of that for more experienced modeling engineers working on larger prob- 
lems. Future investigations involving larger case studies and real-world projects will help to pro- 
vide additional data to evaluate this opinion. 

6.3 Observations on Applicability 
This study involved the analysis of a specification that included both requirements and design. 
While only the specification was used by the modeler for the analysis, an implementation of the 
system was available. The code for the implementation was used by the designer to resolve a few 
issues that were raised in the study. Based upon this study, there does not appear to be any im- 
pediment evidenced that would preclude the application of the modeling approach to any phase of 
the software development life cycle, including requirements gathering, design, and maintenance. 
For example, the modeling approach could be implemented as part of a peer review process dur- 
ing a maintenance upgrade. One possible approach is to have one or two members of a review 
team who are proficient in modeling use the approach as part of their review activities. 

The process of modeling may be an effective way of allowing an engineer, new to a project to 
learn more about the system. Instead of explaining the entire system to the new individual, they 
can be assigned the responsibility of creating a formal model of the system. This would provide a 
framework for interacting with other designers and stakeholders, as appropriate, and establishing 
more detailed understanding of the system by generating and checking claims. 

Even if the low rates of pages per hour observed in this study are confirmed in subsequent inves- 
tigation, these techniques may find cost-effective application in the selective analysis of the criti- 
cal aspects of a system, where extra efforts to ensure reduced error rates are warranted. For higher 
assurance applications, where error elimination is a principal concern, the higher costs associated 
with these techniques will likely be acceptable. In any event, it is premature to make definitive 
judgements based upon this limited investigation. 

6.4 Future Work 
This study can be viewed as one preliminary step in fostering the transition of model-based veri- 
fication techniques and the lightweight use of formal models for software development generally. 
Additional investigations that capture the technical and practice issues in applying model-based 
techniques will be necessary to establish their viability in broader software engineering practice. 
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Appendix A: Glossary 

BDD Binary Decision Diagram 

CMU Carnegie Mellon University 

CSP Communicating Sequential Processes 

CTL Computational Tree Logic 

CVT Continuous Verification and Test 

MSE Master of Software Engineering 

OBDD Ordered Binary Decision Diagrams 

0-0 Object-oriented 

SCS School of Computer Science 

SEI Software Engineering Institute 

SMV Symbolic Model Verifier 

TL Temporal Logic 

URL Universal Resource Locator 
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Appendix B: State Model of the System 

This appendix is a compendium of the Statecharts for the system. 

Outer l^onp I 

Decision Unit 1 Safety CR 1 Baseline CR 1 Experimental CR 1 

Inner I.nop I 

L_Decision Unit 1 L_Safety 1 L_Baseline 1 L_ Experimental 1 

User 
input 
1 

Align 
+ Safe 
state 1 

Ontw I.nnp I 

Decision Unit 2 Safety CR2 Experimental CR2 

Innerlnnp 

L_ Decision Unit 2 L_ Safety 2 L_ Experimental 

User 
input 
2 

Align 
+ Safe 
state 2 

P 
E 
N 

S 
t 
a 
t 
e 

Special Legend: I Modules modeled in this study J     Modules not modeled in this study  

Figure B1:   Overall Configuration of the System 

Overall system 

Figure B2:   States of the Overall System 
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Figure B3:   States of the Decision Unit 

Safety_CR 

Handle COMM 

\hl            / 

M/ 

Transport 

h5\       * Vl6 

'M 
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hin 

(           Handle PEN           ) 
h9 ( 

Handle ALIGN         ) 

Figure B4:   States of the Safety Controller 
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Experimental_Coordinator 

Ex_CoordinatorState 
Ex_TimingPerformancc 

(      TP_meet     ) 

16 17 

(     T?_miss    J 

Ex_PositionPerformance 

PP_meet 

18 

PP_miss 

Figure B5:   States of the Experimental Coordinator 
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Figure B6:   States of the Baseline Coordinator 
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Appendix C: An Excerpt of the 
Specification 

An excerpt from the specification used for this study is included in this Appendix to show the 
level of detail and the notation used by the designer. The entire fourteen page specification 
was used for the study described in this report. 

Distributed Coordinated Motion of Two Inverted 
Pendulums 

Outer Loop Control 
The outer loop control deals with the coordination of the motion of two inverted pendulums. 

It consists of a safety coordinator, a baseline coordinator, and an experimental coordinator. 
The coordination is accomplished by generating and adjusting the setpoints of the inner 
loop controllers. 

Specifications 
User's Command 
1. TARGET - Set the target track position 

2. COOR_ON - Turn on the coordination. The pendulum will move coordinately 

3. COOR_OFF - Turn off the coordination. The pendulum will move independently. 

An Example of Sequential Control Procedure by the User 
• Issues the commands TARGET and COOR_OFF to move the pendulums independently 

to the position where the bar will be engaged. 

• After the pendulums align up at the target position, issues the command COOR_ON; 
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• After the pendulum are coordinately stabilized at the target, engage the bar. 

• Issues the commands TARGET and COOR_ON to move the pendulums to a new target 
position with the bar engaged. 

Communication Assumption 
Information of the current state of the pendulum and current status of the inner loop control- 

lers need to be exchanged between two trusted computers if COOR_ON is demanded. 

Timing Performance of a Coordinator 
The set of events which describe coordinator timing performance, CR_TP is defined as 

CR_TP = {CR_MEET, CR_MISS} 

where CR_MEET/CR_MISS indicate that the coordinator meets/misses the deadline. 

Fault Model 
• Communication fault: At least one trusted computer does not get message from the other. 

• Pendulum fault: At least one of the pendulums is under the inner loop safety control. 

• Alignment fault: the tips of the pendulums are far apart, i.e., 

I(jc7+/sin97) - Qc2+/sin92)l > dsafe or l/cos07 - /cosG2l > hsafe 

Safety Requirement 
• Pendulum Survival: Pendulums do not fall. 

• Safety Criterion: Same as single pendulum 

• Safety for coordination: Do not drop the bar 

• Safety Criterion: The coordination is said safe if: 

- Both trusted computers receive message in a specified rate. 
- None of the pendulums is under inner loop safety control. 

- I W+/sin87) - (x2+/sin02)l <= dsafe and l/cos87 - /cos02l <= hsafe 

Otherwise, it is unsafe. 

State of Coordination Safety 
The set of the states of the coordination, CRJSAFE, is defined as 

CR_SAFE = {SAFE, UNSAFE} 

where SAFE/UNSAFE indicate the coordination is safe/unsafe. 
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Performance Requirement 
The pendulums carry the bar to the target position in a given time interval. Specifically, let 
MAX_ST_UPDATE and MIN_ST_UPDATE be the maximum and minimum setpoint up- 
dates in one outer loop sampling period; Prev_ST and Current_ST be the setpoints in the pre- 
vious period and current period, and Target be the final track position that the pendulum is 
required to reach. The coordinator which generates the Current_ST is said perform if: 

Current_ST = Target 

when   |Prev_ST  -  Target|   <= MAX_ST_UPDATE; 

Prev_ST  + MIN_ST_UPDATE  <=  Current_ST <=  Prev_ST  + MAX_ST_UPDATE 

if  Prev_ST <  Target  - MAX_ST_UPDATE; 

Prev_ST  -  MAX_ST_UPDATE <=  Current_ST <-  Prev_ST  - MIN_ST_UPDATE 

if  Prev_ST  > Target  + MAX_ST_UPDATE; 

Otherwise the coordinator is said nonjperform. 

State of Coordinator Performance 
The set of the status of a coordinator's performance, CRJPERF, is defined as 

CR_PERF = {P,NON_P} 

where P/NON_P indicate that the coordinator is perform/non_perform. 

User's Command of Managing a Coordinator 
The set of the User's Commands to manage a coordinator, CRJUC, is defined as: 

CRJJC = {CR_C, CR_K, CR_E, CR_D, 0} 

where CR_C/CR_K creates/kills the coordinator, CR_E/CR_D enables/disables the output of 
the coordinator, and 0 means no command. 
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